Self-Taught convolutional neural networks for short text clustering
نویسندگان
چکیده
منابع مشابه
Self-Taught convolutional neural networks for short text clustering
Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw...
متن کاملShort Text Clustering via Convolutional Neural Networks
Short text clustering has become an increasing important task with the popularity of social media, and it is a challenging problem due to its sparseness of text representation. In this paper, we propose a Short Text Clustering via Convolutional neural networks (abbr. to STCC), which is more beneficial for clustering by considering one constraint on learned features through a self-taught learnin...
متن کاملSemantic Clustering and Convolutional Neural Network for Short Text Categorization
Short texts usually encounter data sparsity and ambiguity problems in representations for their lack of context. In this paper, we propose a novel method to model short texts based on semantic clustering and convolutional neural network. Particularly, we first discover semantic cliques in embedding spaces by a fast clustering algorithm. Then, multi-scale semantic units are detected under the su...
متن کاملSequential Short-Text Classification with Recurrent and Convolutional Neural Networks
Recent approaches based on artificial neural networks (ANNs) have shown promising results for short-text classification. However, many short texts occur in sequences (e.g., sentences in a document or utterances in a dialog), and most existing ANN-based systems do not leverage the preceding short texts when classifying a subsequent one. In this work, we present a model based on recurrent neural ...
متن کاملConvolutional Neural Networks for Text Hashing
Hashing, as a popular approximate nearest neighbor search, has been widely used for large-scale similarity search. Recently, a spectrum of machine learning methods are utilized to learn similarity-preserving binary codes. However, most of them directly encode the explicit features, keywords, which fail to preserve the accurate semantic similarities in binary code beyond keyword matching, especi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Neural Networks
سال: 2017
ISSN: 0893-6080
DOI: 10.1016/j.neunet.2016.12.008